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Abstract

We present a theoretical proof that the entropy production due to heat exchange in a heat exchanger is minimum

when the local entropy production is constant in all parts of the system. The solution for the minimum is independent of

the value of the heat transfer coefficient. The general case is compared to the minimization problem that has equi-

partition of forces as solution. It is found that equipartition of forces predicts the minimum from the general solution

well for typical heat exchange conditions. The discrepancy between the two solutions depends largely on the temper-

ature dependency of the heat transfer coefficient. The optimal heat exchange conditions are very well approximated in

practice with a counter-current heat exchanger; since the minimum in the entropy production space probably is

flat. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Bejan [1] and coworkers have studied the minimiza-

tion of entropy production (or generation) in many

processes that include heat and mass transfer (see [1,2]

for further references). We are interested in the nature of

the solution to such minimization problems [3]. Are

there characteristic features of the state that has mini-

mum entropy production, and if so, what are they? In a

recent study [4], we reported that one path that gave

minimum entropy production in a heat exchanger was

characterized by equipartition of the inverse tempera-

ture difference, Dð1=T Þ. The inverse temperature differ-

ence is the thermodynamic force for heat transport.

Knowlegde about the nature of the driving forces in the

state of minimum entropy production may be useful for

design of new apparatuses. A question about the general

nature of the constant force solution is therefore ap-

propriate.

In this work we shall find a more general solution to

the minimization problem, and discuss how and why the

equipartition of forces solution deviates from the general

solution. We shall see that the mathematical assumption

that was made in the derivation of equipartition of

forces (that the functional derivative could be replaced

by a local derivative) has a physical translation: The

constant force solution can only be expected if the sys-

tem lacks memory of prehistory or a function that

connects the different parts of the system to each other.

If this is not so, the state of minimum entropy produc-

tion is characterized by constant entropy production.

A solution giving equipartition of entropy produc-

tion was presented by Tondeur and co-workers [5,6].

They assumed a constant heat transfer coefficient, so

their result will also give equipartition of forces. In this

work we let the heat transfer coefficient vary with the

temperature, and include as memory function, the en-

ergy balance. We ask, given that the energy balance

must be fulfilled, how can we specify boundary condi-

tions that are compatible with minimum entropy pro-

duction in the total system? And, how can the state of

the system be characterised in this case?

2. The system

The system is the same as presented before [4], see

Fig. 1. It consists of a hot and a cold fluid separated by a

thin metal plate. Both fluids are perfectly mixed in the

y-direction. We shall therefore discuss changes per unit

length in the y-direction, Dy ¼ 1: In the x-direction,
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there is a temperature gradient in the metal plate and in

the fluid films next to the plate as shown in the lower

part of Fig. 1. In the bulk of both fluids there are only

gradients in the z-direction. Heat is conducted through

the metal plate in the x-direction. The conduction of

heat in other directions is neglected. The system has

length l, so 0 < z < l.
The hot fluid flows from left to right. It enters at

temperature Th;in and leaves at Th;out. The mass flow rate,

J, and the heat capacity, Cp, are known. The tempera-

ture profile of the hot fluid, ThðzÞ, is then given by

conservation of energy

JCp dTh ¼ J 0
qDy dz; ð1Þ

where J 0
q is the z-dependent heat flux across the metal

plate.

None of the properties of the cold fluid (fluid flow,

flow direction, heat capacity, etc.) are specified yet. We

assume that we are able to control the temperature of

the cold fluid at every position, z, in some way. We will

discuss later how to achieve this control in practice.

3. The minimization problem

The aim is to minimize the total entropy production

rate, dSirr=dt; of the system for a given amount of heat

transferred, Q (equivalent to fixing Th;in and Th;out). The
local entropy production rate is the product sum of all

fluxes ðJiÞ and their conjugate forces ðXiÞ in the system

[7–9]

r ¼
X
i

JiXi: ð2Þ

We assume that the entropy production due to heat

transport can vary, while frictional losses due to fluid

flow are constant. The interesting part of r is then

r ¼ J 0
q

d

dx
1

T

� �
; ð3Þ

where T is the absolute temperature, d=dxð1=T Þ is the

thermal driving force, and J 0
q is the measurable heat flux

in the x-direction. In our model we deal with stationary

states. In the x-direction, this gives

d

dx
J 0
qðzÞ ¼ 0: ð4Þ

This means that the local entropy production rate, Eq.

(3), can be integrated across the metal plate

rDx ¼ J 0
qD

1

T

� �
: ð5Þ

Nomenclature

C constant (J/K m)

Cp constant pressure heat capacity (J/K kg)

EoF equipartition of forces

EoEP equipartition of entropy production rate

J fluid flow (kg/s)

Ji flux

J 0
q measurable heat flux ðJ=m2 sÞ
L integrand in the Euler–Lagrange equation

l length of the unit (m)

lqqðThÞ average heat transfer coefficient ðJ K=m2 sÞ
q fraction of total heat transferred (J/s)

Q total heat transferred (J/s)

RðThÞ thermal resistance ðm2 s=J KÞ

dSirr=dt total entropy production rate (J/K s)

Dð1=T Þ thermal force (1/K)

T temperature (K)

Tc temperature of the cold fluid (K)

Th temperature of the hot fluid (K)

Th;in inlet temperature of the hot fluid (K)

Th;out outlet temperature of the hot fluid (K)

x, y, and z space coordinates (m)

X ¼ Dð1=T Þ thermal force (1/K)

Xi force conjugate to Ji
D difference

k Lagrange multiplier

r local entropy production rate ðJ=K m3 sÞ

Fig. 1. The heat exchange example showing coordinate axes.

The hot fluid flows from left to right. A cold fluid flows on the

other side (direction not specified). There is a temperature dif-

ference between the bulk phases of the two fluids, Th � Tc.

2650 E. Johannessen et al. / International Journal of Heat and Mass Transfer 45 (2002) 2649–2654



The flux–force relation is accordingly

J 0
q ¼ lqqðThÞD

1

T

� �
; ð6Þ

where Th is the temperature of the hot fluid. A discussion

on the linearity of this equation was given previously [4].

We shall use the inverted form

X � D
1

T

� �
¼ RðThÞJ 0

q; ð7Þ

where RðThÞ is the thermal resistance. When this is in-

troduced into Eq. (5), we get the entropy production rate

across the metal as a function of the heat flux

r ¼ 1

Dx
RðThÞ J 0

q

h i2
: ð8Þ

The total entropy production rate is found by integrat-

ing r over the area of heat transfer, where we are in-

terested in the variation between z ¼ 0 and z ¼ l

dSirr
dt

¼ DxDy
Z l

0

r dz ¼ Dy
Z l

0

RðThÞ J 0
q

h i2
dz: ð9Þ

The constant heat flux across the metal, J 0
q, is a function

of z via the energy balance, Eq. (1). By introducing

J 0
q ¼ JCp

1

Dy
dTh
dz

ð10Þ

into Eq. (9), the total entropy production rate becomes

dSirr
dt

¼
Z l

0

R Thð Þ
Dy

JCp

dTh
dz

� �2
dz; ð11Þ

where in addition to R; also Cp may be a function of the

temperature Th but not Tc.
The system has a minimum in Eq. (11), and this can

now be found from variational calculus. If a function

ThðzÞ is a local minimizer to the functional dSirr=dt, then
according to variational calculus [10], the integrand

must satisfy

L� dT
dz

o

oðdTh=dzÞ
L ¼ C; ð12Þ

where L is the integrand in Eq. (11), and C is a constant.

In the present case, this gives as condition for minimum

total entropy production rate, that the local value of the

entropy production rate is constant throughout the sys-

tem (equipartition of entropy production or EoEP)

RðThÞ
Dy

JCp

dTh
dz

� �2
� dTh

dz
2RðThÞ

Dy
JCp

	 
2 dTh
dz

� �

¼ �RðThÞ
Dy

JCp

dTh
dz

� �2
¼ �DxDyr ¼ C: ð13Þ

Equipartition of forces was obtained from Euler–Lag-

range optimization with the restriction that a constant

amount of heat was transferred

Q ¼ Dy
Z l

0

J 0
q dz: ð14Þ

In order to see the connection between the two optimi-

zation methods, consider again the proof that lead to the

equipartition of forces solution

d
dJ 0

q

Z
R J 0

q

h i2�
þ kJ 0

q

�
dz ¼ 0: ð15Þ

The condition for the solution of constant force RJ 0
q ¼

X ¼ �k=2 was that the functional derivative could be

replaced by the local derivative, or rather, that R was no

function of J 0
q. This is the same assumption used by

Tondeur and Kvaalen [5] in their equipartition of en-

tropy production solution. In our case we have such a

dependency. The resistance R depends on J 0
q, because

it depends on the amount of heat that has been ex-

changed up to the point z. We therefore define q as a

fraction of Q

q ¼ Dy
Z z

0

J 0
q dz

0; ð16Þ

where z6 l. The solution to Eqs. (15) and (16) was de-

rived by Bedeaux et al. [3]

X ¼ � k
2
� 1

2

Z l

z

dR
dq

Dy J 0
q

h i2
dz0: ð17Þ

The derivative of the force, as given in Eq. (17), with

respect to z is

dX
dz

¼ 1

2

dR
dq

Dy J 0
q

h i2
¼ 1

2

dR
dz

J 0
q: ð18Þ

In the transformation, they used dq=dz ¼ DyJ 0
q. The de-

rivative of the force, as given in Eq. (7), with respect to

z is

dX
dz

¼ dR
dz

J 0
q þ R

dJ 0
q

dz
: ð19Þ

They equated Eqs. (18) and (19), and multiplied the new

equation by 2J 0
q, and obtained, after some rearrange-

ment

J 0
q

h i2 dR
dz

þ 2RJ 0
q

dJ 0
q

dz
¼ 0;

d

dz
R J 0

q

h i2� �
¼ 0;

d

dz
r ¼ 0:

ð20Þ

The local entropy production rate is constant along the

system, when the total entropy production rate is mini-

mum. The same result was found in Eq. (13). Clearly,

the local condition Eq. (10) can either enter directly in

the variational calculus, as in Eqs. (11)–(13), or it can be

used in an Euler–Lagrange formulation of the problem,

as in Eqs. (15)–(20). The two ways to the same result are
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equivalent. This gives the physical insight about the

memory of the system, as represented by dR=dq 6¼ 0.

The equipartition of forces solution [4,11] is correct

when there is no inter-dependency between the fluxes, J 0
q,

or when dR=dq 6¼ 0. By comparing results from the

EoEP and EoF solutions, we can test how good the

assumption is.

4. Calculations

A model system was used to illustrate the difference

between the EoF and EoEP solutions, namely the sys-

tem shown in Fig. 1. The length, l, and the width, Dy,
were 10 and 1 m, respectively. The hot stream had a

mass flow of J ¼ 0:3 kg=s, the heat capacity of the hot

stream was Cp ¼ 4000þ Th J=kg K, and lqq ¼ 370T 2
h

J K=m
2
s was used to estimate the heat transfer coeffi-

cient. The resistance, RðThÞ, is the inverse of lqq. The
outlet temperature of the hot stream, Th;out, was kept at
400 K.

Two cases were calculated for both EoEP and EoF.

Only the inlet temperature of the hot stream was varied

between the two cases. In the first case, we gave it a

realistic value, Th;in ¼ 450 K. In the second, we gave it a

high and unrealistic value, Th;in ¼ 1000 K, in order to

show the difference between the two solutions, and when

the assumption behind the EoF solution produces a

significant error in the results.

The EoEP solution derived in this work requires the

local entropy production, r, to be constant. To solve this

numerically, we isolated dT=dz from Eq. (13)

dTh
dz

¼ �
ffiffiffiffiffiffiffiffi
�C

p

JCp

ffiffiffiffiffiffiffiffiffiffiffiffi
RðThÞ

p : ð21Þ

The negative root was the only real solution. For a

random value of C, this equation was integrated over l

using the constant Th;out ¼ 400 K at l ¼ 10 m as the

initial value. At l ¼ 0 m, the calculated value of Th;in was
compared to the specified value (i.e., 450 or 1000 K), and

the constant C was increased or decreased, using a bi-

nary search algorithm, until they were identical.

The EoF solution however, requires the inverse tem-

perature difference, Dð1=T Þ, to be constant. We solved

dTh=dz from the energy balance, Eq. (1), and introduced

Eq. (6) into it. When we substituted the inverse tem-

perature difference in the resulting equation with �k=2,
we got

dTh
dz

¼ � k
2JCpRðThÞ

: ð22Þ

The numerical approach to solving this equation was

identical to the one described above, except that here we

varied the Lagrange multiplier, k, in the binary search.

For both cases, in addition to calculating the Th
profiles as described above, we calculated the total en-

tropy production, dSirr=dt, and Tc and r profiles.

5. Results and discussion

The temperature profiles and local entropy produc-

tion profiles for the first case are shown in Figs. 2 and 3.

From Fig. 2, we see that the temperature profiles are

close to identical, so we expect the same from the total

entropy production of the two solutions. This is indeed

the case. The total entropy production for the EoF solu-

tion was ðdSirr=dtÞEoF ¼ 7:197 J=K s, while for the EoEP

solution, it was ðdSirr=dtÞEoEP ¼ 7:189 J=K s.

Fig. 3 shows the local entropy productions through-

out the system for the two different solutions. It also

shows that compared to the EoEP solution, the EoF

solution gives a local entropy production that is too high

in the first half and too low in the second half. This is

also indicated by the T-profiles in Fig. 2. We see that

jDð1=T ÞEoFj is slightly smaller than jDð1=T ÞEoEPj at l ¼
0 m, and slightly larger at l ¼ 10 m.

The temperature profiles and local entropy produc-

tion profiles for the second case are shown in Figs. 4

and 5. In this case, the results are different. Looking at

Fig. 4, we see a larger discrepancy between the temper-

ature profiles. The profiles from the EoF solution are

more curved than the ones found using the EoEP solu-

tion. The total entropy production was ðdSirr=dtÞEoF ¼
516:5 J=K s for the EoF solution and ðdSirr=dtÞEoEP ¼
481:5 J=K s for the EoEP solution. EoF fails to predict

the minimum by 7%. A deviation was expected, since an

increased temperature difference over the hot stream

makes the resistance, RðThÞ, vary much more. Table 1

 
 

Fig. 2. Temperature profiles corresponding to the solutions

given by the equipartition of entropy production (EoEP) solu-

tion (lines) and to the equipartition of force (EoF) solution

(points) at Th;in ¼ 450 K.
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shows the maximum and minimum values of R in the

two cases.

In the first case, R varies by about 20%, while in case

two, its variation is close to an order of magnitude.

Thus, for case two, the assumptions behind the EoF

solution are not adequate. However, it is remarkable

that the two solutions give so similar results for the total

entropy production in spite of the large variations in R

and the large discrepancies in the temperature profiles

from the two solutions. This can be explained by a

possible flat minimum in dSirr=dt.
The local entropy production in the EoF solution is

not constant throughout the system; see Figs. 3 and 5. If

we compare the two figures, we see that local entropy

production profile goes from being almost linear to be-

ing quite curved when the temperature difference over

the hot stream increases from 50 to 600 K. The local

entropy production profiles show that the nature of the

two solutions differs more than the corresponding values

for the total entropy productions suggest. On the left-

and right-hand sides of the figures, respectively, we see

that the profiles from the EoF solution have a positive

and a negative deviation from the profiles predicted by

the EoEP solution. These areas almost cancel each

other, and make the entropy productions similar. This

canceling and similar results obtained by others [12]

supports the hypothesis of a flat minimum in the total

entropy production space.

The EoF solution seems to be a good approximation

to the EoEP solution for most practical purposes. From

the calculations presented in this work, it seems that we

may expect a deviation of less than one percent for

practical cases.

The very important question now is how to achieve

optimal heat exchange conditions in practice, for in-

stance, in a heat exchanger. Our results tell that the cold

fluid must have a tailored heat capacity. We must

therefore think design of heat exchanger in terms of

ways to obtain the target heat capacity. One possibility

to achieve the target heat capacity is to use a counter-

current heat exchanger with multiple inlets and outlets

for the cold fluid. Another option is to use pure cross-

current flow with infinitely many cold streams having

different temperatures. Both alternatives are probably

impractical and not economically feasible. We therefore

have find a practical approximation to the optimal heat

exchange solution. The standard counter-current heat

 
 

Fig. 4. Temperature profiles corresponding to the solutions

given by equipartition of entropy production (EoEP) (lines) and

to equipartition of force (EoF) (points) at Th;in ¼ 1000 K.

Fig. 5. The local entropy production rate as a function of

position along the system at Th;in ¼ 1000 K.

Fig. 3. The local entropy production rate as a function of

position along the system at Th;in ¼ 450 K.

Table 1

The maximum and minimum values of R in the two calculated

cases

Rmin ðm2 s=J KÞ Rmax ðm2 s=J KÞ
Case 1 1:45� 10�6 1:84� 10�6

Case 2 0:294� 10�6 1:84� 10�6
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exchanger is the best first approximation. It has quali-

tatively the same properties as the optimal solutions

presented here; when the temperature difference between

the hot and the cold fluids is approximately constant.

The fact that the entropy production minimum of heat

exchange probably is flat, suggests that there is little

reason to try to approach the optimal heat exchange

solution more closely in practice.

6. Conclusion

We have shown that the temperature profiles through

a system with heat exchange that give minimum entropy

production for the heat exchange process, correspond

to equipartition of entropy production, rather than to

equipartition of thermal driving force. The theoretical

result can be used as an argument that heat exchange

processes characterized by constant entropy production

give the best second law efficiency possible. However, in

practical situations, a constant driving force seems to

estimate the real solution within an error less than one

percent. The optimal heat exchange conditions are

therefore well approximated in practice with a counter-

current heat exchanger with an approximately constant

temperature difference between the fluids. The explana-

tion for this is that the minimum in the entropy pro-

duction space probably is flat.
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